送交者: sssa 于 2005-10-06, 15:48:36:
数理方面,联大教授阵容之坚强远非当时国内一般学人所能深悉。根据最近与林家翘学长三度电话长谈,30年代清华物理系最难能可贵之处,是已经明了当时世界最先进的物理研究主流和取向;而且系中如吴正之、赵忠尧等做出的成绩,确与他们相关诺贝尔获奖人的研究成果非常接近。杨振宁在联大本科及清华研究院所受的训练有极高的史料价值。他大一物理、大二电磁学、大二力学分别是由赵忠尧、吴正之、周培源讲授的——这种教学水平,除美国少数第一流大学以外,实不多见。联大数理教学风气异常认真,学生做习题极为勤奋。教师中尤足称道者是南开出身、北大专任的吴大猷。在战时图书设备不足的情况下,他理论物理的论文已能连续刊载于美国和英国几种权威物理期刊,实际上已跻身于理论物理先进之列。他是影响杨振宁一生研究工作最深的两位老师之一。在吴指导之下,杨振宁1940年完成的联大学士论文,已能初步领悟到“群论的美妙和它在物理中应用的深入”,因此开始走向一生主要研究领域之一:对称原理(应该指出的是群论的入门是靠父亲杨武之先生开导的)。影响他最深的另位老师是清华五级(1933年毕业)中英庚款学成归国的王竹溪教授。在王指导之下,杨振宁1942年完成了有关统计力学的联大(实是清华)研究院的硕士论文,并从此以统计力学作为长期研究的另一主要领域。
从杨振宁回忆中不难窥测20世纪中国物理学界“世代”之间的传承关系,特别是此一实例中所暗示的课堂之外“面对面”的“师徒关系”。由于师资、学风、学生素质的配合运作,联大造就了不少卓越的青年科学家,如清华十级(1938年毕业)的胡宁和与杨同时的黄昆、张守廉及姗姗来迟年18岁的李政道。吴大猷回忆:“他(李政道)求知心切,真到了奇怪的程度。有时我有风湿痛,他替我捶背,他帮我做任何家里的琐事。我无论给他什么难的书和题目,他很快地做完了,又来索更多的。我由他做问题的步骤,很容易发现他的思想敏捷,大异寻常。”
联大数学方面师资之卓越足堪与物理媲美。30年代南开和清华就特别注重天才学生的培育。最著名的例子是南开姜立夫全力教导陈省身及吴大任,和清华算学系主任熊庆来提拔仅仅初中毕业的华罗庚。华在数论方面的卓越成就久为国人所稔知,但很少学人了解回国前的陈省身业已受到法国大数学家嘉当(Elie Cartan)的特殊赏识,回国在联大执教期间(1938—1943)已初步奠定其日后被目为嘉当承继人、世纪级数学大师的研究基础。更少人知的是联大新一代教授中,还有世界第一流的数理统计学家许宝(清华第五级,1933年毕业,庚款赴英,获伦敦大学哲学博士、剑桥大学科学博士)。陈省身(1911年生)、许宝和华罗庚(两位都是1909年生),也都是1948年中央研究院第一届全体81位院士之中最年轻的3位。再加上姜立夫老教授,中研院第一届5位数学院士之中,联大已占了4席,可见联大数学师资之雄厚。
在如此雄厚师资及优良传统之下,抗战前已毕业于清华及联大早期毕业的数学新秀陆续脱颖而出。林家翘(清华九级,1937年毕业于物理系),就任联大助教期间考取中英庚款数学门,20年后即成为举世公认的应用数学大师,并为国人入选美国国家科学院之最早5人之一。清华七级(1935年毕业)已任联大数学系讲师的徐贤修出国后亦显名于应用数学界。清华十一级(联大,1939年毕业)之王宪钟与十二级(联大,1940年毕业)之钟开莱不久俱在美国做出重要的贡献。后者与本文作者及杨振宁同为第六届中美庚款公费生,二三十年前已被公认为第一流“或然率”(probability)统计专家。王浩本来主修数学,后又攻哲学,在海外称雄于数理逻辑界。联大数学系为国内造就高素质数学教学及研究人员不胜枚举。
化学方面,三校师资及其专长分配均衡。北大曾昭抡、钱思亮、孙承谔、朱汝华等实力视清华有过之无不及。南开杨石先主授生物化学,其专业知识、高度责任感及行政才干,受到联大普遍的尊敬。联大期间三校原有的教员助教或由半资助或由其他途径出国深造者不少。联大毕业的新秀由庚款考试出国,日后成就以朱汝瑾、唐敖庆、王瑞为最著。地质、气象等方面联大所造就之人才亦颇可观,不能一一列举。
联大工学院,除南开对化工有所贡献之外,基本上就是抗战前的清华工学院。清华工学院是梅贻琦长校(1930年底)以后才建立并迅速扩充的。从目前所能获得相当残缺的早期中英、中美庚款考试资料,可以看出抗战前清华工学院毕业学生录取的人数远远不如交通大学之多。可是,抗战期间举行的第五(1940)及第六(1943)两届清华留美庚款考试,清华及联大毕业生占总共17工程科门公费生中11名之多。大战结束后中英庚款和教育部公费考试中情况应大体相同。可见联大(清华)工程方面已经是后来居上了。
总之,联大理工方面,尤以数理,最能发扬光大战前三校优良学风。我多年来和科学界老朋友忆往的积累印象是:当年联大在数理知识的传授上已是非常接近世界先进水平了。实证甚多,姑举其二。(1)1957年杨振宁、李政道荣获诺贝尔物理学奖是与他们早年所受联大的训练分不开的。(2)首批5位华裔入选美国国家科学院,其中4位都曾是联大的教师和学生:陈省身、林家翘、杨振宁、李政道。另位吴健雄是中央大学毕业的。
此外,现代科学史中有一数学与物理“殊途同归”的佳话,也应视为联大的光荣。其中内容和经过最好用杨振宁自己的话来说明:
纤维丛(fibre bundle)理论中的陈氏级(Chern Class)……不但是划时代的贡献,也是十分美妙的构思;把一个完整的流形(manifold)切开,再巧妙地接起来,天衣无缝还原形。我在一九七五年懂了此中奥妙以后,真有叹为观止之感。
我是研究物理的,为什么去求了解陈氏级呢?经过是这样的:近代物理研究自然界的“力”,发现共有四种:核力、电磁力、弱力和引力。四种力和它们的能(Energy)都是规范场(Gauge Field),这是三十年来的一项基本了解。规范场的方程式是物理学者从十九世纪的电磁学方程推广出来的。惊人的地方是这些方程式后来发现和数学家的纤维丛观念有密切的关系。一九七四年又发现了这些方程式与陈氏级的关系。物理学者因而知道有了解陈氏级的必要。至于为什么自然界的各种力都要建筑在几何学中的纤维丛观念上始终是不解之谜。陈教授今天在几何学界的地位已直追欧几里得(Euclid,公元前300年左右)、高斯(Gauss,1777— 1855)、黎曼(Riemann,1826—1866)和嘉当(E.Cartan,1869—1951)。
联大的历史只有8年,而其数理方面学风之优异与成果的卓越是永垂史册的。